
Out-of-equilibrium dynamics in a Gaussian trap model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys.: Condens. Matter 19 205107

(http://iopscience.iop.org/0953-8984/19/20/205107)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 28/05/2010 at 18:47

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/19/20
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 19 (2007) 205107 (11pp) doi:10.1088/0953-8984/19/20/205107

Out-of-equilibrium dynamics in a Gaussian trap model

Gregor Diezemann

Institut für Physikalische Chemie, Universität Mainz, Welderweg 11, 55099 Mainz, FRG

Received 29 September 2006
Published 25 April 2007
Online at stacks.iop.org/JPhysCM/19/205107

Abstract
The violations of the fluctuation–dissipation theorem are analysed for a trap
model with a Gaussian density of states. In this model, the system reaches
thermal equilibrium for long times after a quench to any finite temperature
and therefore all ageing effect are of a transient nature. For not too long
times after the quench it is found that the so-called fluctuation–dissipation ratio
tends to a non-trivial limit, thus indicating the possibility for the definition
of a timescale-dependent effective temperature. However, different definitions
of the effective temperature yield distinct results. In particular, plots of the
integrated response versus the correlation function strongly depend on the
way they are constructed. Also the definition of effective temperatures in the
frequency domain is not unique for the model considered. This may have
some implications for the interpretation of results from computer simulations
and experimental determinations of effective temperatures.

1. Introduction

The out-of-equilibrium dynamics of glasses and disordered systems has been studied quite
intensively in the last decade; see e.g. [1]. One reason for the interest in this area lies in
the fact that glassy systems usually do not reach thermal equilibrium within experimentally
accessible times when cooled to low temperatures. In such a situation the question as to whether
there is a possibility for characterizing the non-equilibrium state of the system naturally arises.
In particular, it would be extremely helpful if some of the tools of statistical physics could
be extended to non-equilibrium situations. One of the efforts of quantifying the deviations
from thermal equilibrium is concerned with extensions of the fluctuation–dissipation theorem
(FDT) relating the response of the system to the two-time correlation function. In equilibrium,
this relation is determined by the thermodynamic temperature. For non-equilibrium systems,
the deviations from the FDT can in some cases be used for the introduction of a timescale-
dependent effective temperature Teff [2]. A variety of model-calculations and numerical
simulations have been performed to analyse the behaviour of Teff obtained this way; for reviews
see [3, 4]. Recently, also some experimental investigations of the violations of the FDT have
been performed; see e.g. [5]. One typically finds a behaviour in which Teff exceeds the bath

0953-8984/07/205107+11$30.00 © 2007 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/0953-8984/19/20/205107
http://stacks.iop.org/JPhysCM/19/205107


J. Phys.: Condens. Matter 19 (2007) 205107 G Diezemann

temperature by a certain amount. This makes sense as the typical preparation of the system is
given by a quench from a high temperature into a glassy phase.

There are, however, still some open questions regarding the usefulness of the interpretation
of the effective temperatures obtained from FDT violations. For instance, for a meaningful
definition of a temperature, Teff should be independent of the dynamical variable used for its
calculation. In the case that so-called neutral variables [6] are used, Teff is often found to be
independent of the variable in some long-time limit. Another question is concerned with the
relaxation of Teff to the bath temperature when the system reaches thermal equilibrium on some
timescale. This point has been investigated in some recent papers [7–9] with the result that
some care has to be taken in the determination of Teff. Apart from these model calculations the
relation of Teff towards the bath temperature has also been observed in simulations [10].

In the present paper, I will consider another model in which the system reaches equilibrium
for long times after a quench, namely a trap model with a Gaussian distribution of trap
energies [11]. The same model has been introduced earlier as an approximation to a random
walk model [12] and was termed ‘energy master equation’ then. It was shown in [12] that this
model is able to reproduce some features that are observed in the relaxation of supercooled
liquids and glasses. Furthermore, recently it was demonstrated that some results of simulations
on models of supercooled liquids can (at least partly) be interpreted in terms of a Gaussian
trap model [13–15]. Some features of the ageing behaviour of the populations of the traps
have already been discussed in [7]. There it was shown that after a quench from an (infinitely)
high temperature the distribution of populations as a function of the time elapsed after the
quench first narrows and then broadens again, in qualitative accord with some observations
in computer simulations [16]. It should, however, be mentioned that there are hints from
simulations that for deep quenches the system explores regions of phase space that are not
visited in equilibrium [16, 17]. Such effects cannot be captured by the simple trap model.

In the following section, I will briefly recall the derivation of the fluctuation–dissipation
relations for trap models [18–20]. In section 3 the results of model calculations are presented
and discussed. The paper closes with some conclusions in section 4.

2. Fluctuation–dissipation relations for trap models

The derivation of the fluctuation–dissipation relations for arbitrary continuous-time Markov
processes has been given in [20]. Usually one assumes a situation in which the system under
consideration is quenched from a high temperature T0 to a low temperature T in the beginning
of the experimental protocol. After a time tw, called the waiting time, has elapsed after the
quench, some dynamical quantities are monitored. In the present context, the correlation
function of some dynamical variable M(t),

C(t, tw) = 〈M(t)M(tw)〉 =
∫

dε

∫
dε ′M(ε)M(ε ′)G(ε, t|ε ′, tw)p(ε ′, tw) (1)

and the response to a field applied at time tw, H (t) = H δ(t − tw), conjugate to M ,

R(t, tw) = δ〈M(t)〉
δH (tw)

∣∣∣∣
H=0

(2)

are of particular importance. In the above expressions, the values of ε are meant to represent
the trap energies. M(ε) is the value the dynamical variable M acquires in the trap with
energy ε and G(ε, t|ε ′, tw) is the conditional probability to find the system in trap ε at time
t , provided it was in trap ε ′ at time tw. The populations p(ε ′, tw) evolve from the initial
populations p(ε, t = 0), typically equilibrium populations at the starting temperature T0,
via p(ε, tw) = ∫

dε ′ G(ε, tw|ε ′, 0)p(ε ′, 0). For a stationary Markov process, the conditional
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probability G(ε, t|ε ′, tw) is time-translational invariant, G(ε, t|ε ′, tw) = G(ε, t − tw|ε ′, 0) ≡
G(ε, t − tw|ε ′), and obeys a master equation [21]:

∂

∂ t
G(ε, t|ε ′) = −

∫
dε ′′ W (ε ′′|ε)G(ε, t|ε ′) +

∫
dε ′′ W (ε|ε ′′)G(ε ′′, t|ε ′) (3)

with W (ε|ε ′) denoting the rates for a transition from ε ′ to ε. In order to calculate the linear
response to a field one has to fix the dependence of the transition rates on the field H . Following
Ritort [18], I use the following form of multiplicatively perturbed transition rates:

W (H )(ε|ε ′) = W (ε|ε ′)eβH[γ M(ε)−μM(ε′)] (4)

where γ and μ are arbitrary parameters and β = 1/T (with the Boltzmann constant set to
unity). If μ + γ = 1 holds additionally, then the rates W (H )(ε|ε ′) obey detailed balance
also in the presence of the field, provided the W (ε|ε ′) do so. In all following calculations the
unperturbed transition rates will be chosen according to

W (ε|ε ′) = η(ε)κ(ε ′) with κ(ε ′) = κ∞eβε′
(5)

as is usual for the trap model [11, 12, 22]. Note, however, that other choices have also been
considered; see e.g. [23]. As already mentioned above, I will only consider the trap model
with a Gaussian density of states, η(ε) = 1√

2πσ
e−ε2/(2σ 2). In this case, the system reaches

equilibrium for long times regardless of the initial conditions. The equilibrium populations are
given by peq(ε) = limt→∞ G(ε, t|ε0, t0) = 1√

2πσ
e−(ε−ε̄)2/(2σ 2) with the temperature-dependent

mean energy ε̄ = −βσ 2 [12]. Note that the variance σ is temperature independent.
The details of the calculation of the linear response according to equation (2) have been

presented in [18–20]. As a result, it is found that for mean-field trap models with a dynamical
variable M that obeys a distribution with zero mean, 〈M〉 = 0, and unit variance, 〈M2〉 = 1,
the fluctuation–dissipation relation can be written as

R(t, tw) = β

[
γ

∂�(t, tw)

∂ tw
− μ

∂�(t, tw)

∂ t

]
. (6)

Here, the correlation function

�(t, tw) =
∫

dε e−κ(ε)(t−tw) p(ε, tw) (7)

gives the probability that the system has not left the trap occupied at tw in the following time
interval (t − tw) [11].

In equilibrium, all quantities are time-translational invariant and one has

Req(t) = −β(γ + μ)
d�eq(t)

dt
(8)

which for μ = 1 − γ is just the well known FDT. As mentioned above, the system always
reaches equilibrium for tw → ∞. Therefore, all ageing effects are of a transient nature. This
behaviour is similar to what one expects for structural glasses cooled not too low below the
calorimetric glass transition temperature. In the present paper, the quenches are performed
in the following way. In the beginning, the system is prepared in thermal equilibrium at the
initial temperature T0, i.e. peq

T0
(ε) = 1√

2πσ
e−(ε−ε̄0)

2/(2σ 2) with ε̄0 = −β0σ
2. The following time

evolution is calculated at the working temperature T , pT (ε, tw) = ∫
dε ′ GT (ε, tw|ε ′, 0)peq

T0
(ε),

where GT (ε, tw|ε ′, 0) is the solution of equation (3) with the transition rates (5) evaluated for
β = 1/T .

The violations of the FDT in out-of-equilibrium situations can be characterized by the
so-called fluctuation–dissipation ratio (FDR):

X (t, tw) = T R(t, tw)

∂tw�(t, tw)
(9)

3
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Figure 1. �eq(τ ) versus τ for various temperatures.

which also allows the definition of a timescale-dependent effective temperature Teff(t, tw) =
T/X (t, tw), the detailed behaviour of which has been discussed for a variety of models [3].

Another way to define an effective temperature has been proposed and applied in
experimental determinations of FDT violations [2, 5]:

Teff(ω, tw) = ωC(ω, tw)

χ ′′(ω, tw)
(10)

relating the Fourier transform of the correlation function (spectral density) to the dissipative
part of the susceptibility. Of course, one would assume the various definitions to yield identical
results. In the next section, different definitions will be compared and the differences will be
discussed for the Gaussian trap model.

3. Results and discussion

I will start with a brief discussion of the equilibrium properties of the correlation function
�(t, tw). As already mentioned above, the system reaches equilibrium for long times after a
quench has been performed, i.e. in the limit tw → ∞. According to equation (7), in this limit
one has for τ = (t − tw) < ∞

�eq(τ ) =
∫

dε e−κ(ε)τ peq(ε). (11)

This function is plotted in figure 1 as a function of τ/τeq for various temperatures, where τeq

is the relaxation time determined as the 1/e decay time of �eq(τ ). It is evident that the decay
becomes broader with decreasing temperature. This means that in this model time–temperature
superposition does not hold in equilibrium. Without showing the results here, I only mention
that the values for the relaxation time τeq and the stretching parameter βeq in a Kohlrausch fit
to �eq, �eq(τ ) ∼ exp

[−(τ/τeq)
βeq

]
, roughly follow the expressions given by Monthus and

Bouchaud [11], ln (τeq) ∼ (1/T )2 and βeq ∼ [1 + (a/T )]−1/2, where a is a constant.
In order to see in which time range ageing effects can be observed in �(t, tw) for finite tw,

in figure 2(a) I show �(tw + τ, tw) as a function of the measuring time τ for a quench from
infinite temperature, β0 = 0, to various working temperatures. It is seen that the decay times
τ (tw) span a much broader range at low temperatures than at high temperatures. A closer look
additionally reveals the fact that the decay is broader for small and large waiting times than for
intermediate tw. The origin of this behaviour lies in the waiting-time-dependent width of the
distribution of the population, p(ε, tw); cf the more detailed discussion on this point in [7].

4
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(a)

(b)

Figure 2. (a) �(tw + τ, tw) versus measuring time τ , scaled to the equilibrium relaxation time τeq

(1/e decay time) for a quench from T0 = ∞. (b) 〈τ (tw)〉 versus tw/〈τeq〉 showing the time window
in which ageing effects are to be expected. The inset shows the mean relaxation times 〈τ0〉 = 〈τ (0)〉
and 〈τeq〉 = 〈τ (∞)〉 as a function of inverse temperature.

The time window in which significant ageing effects are to be expected can most easily be
quantified by considering the mean relaxation time,

〈τ (tw)〉 =
∫

dτ�(tw + τ, tw),

which does not depend on the width of the actual decay. The mean relaxation times for a
quench from T0 = ∞ to various temperatures are shown in figure 2(b). The difference of the
mean relaxation time directly after the quench, 〈τ0〉 = 〈τ (0)〉 = κ−1∞ exp (β2σ 2/2), and the
equilibrium mean relaxation time, 〈τeq〉 = 〈τ (∞)〉 = κ−1∞ exp (3β2σ 2/2), shown in the inset
in figure 2(b), gives a measure for the ‘ageing time window’ at a given temperature.

As is exemplified in figure 3(a), the overall time window for visible ageing effects
diminishes not only with increasing final working temperature, but also with lower initial
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(a)

(b)

Figure 3. (a) �(tw + τ, tw) versus τ/τeq for quenches from various T0 = 0, σ , 0.5σ and
log10(tw/τeq) = −15,−5,−3,−1, 1, 5. (b) τ (tw) (upper panel) and β(tw) (lower panel) versus
tw/τeq as obtained from fits to a Kohlrausch function, exp[−(τ/τ (tw))β(tw)].

temperature T0. It is evident that the effect of lowering T0 is similar to measuring the
correlation at a higher working temperature for a given T0. In figure 3(b) the relaxation time
τ (tw) and the stretching parameter β(tw) as obtained from Kohlrausch fits to �(tw + τ, tw),
�(tw + τ, tw) ∼ exp [−(τ/τ(tw))β(tw)], are shown. One can see that the overall spread in
relaxation time diminishes with decreasing T0 and that τ (tw) approaches τeq at the working
temperature T on the timescale of τeq itself. This is because there is no other timescale present
in the model. The stretching parameter β(tw) first increases and then decreases again as a

6
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Figure 4. The FDR X (tw + τ, tw) versus τ/τeq for a quench from T0 = ∞ to 0.3σ and γ = 0,
μ = 1 for various waiting times tw.

function of the waiting time, similar to what has been found earlier in a free-energy model for
the primary relaxation of viscous liquids [20]. Note that in the limit of short and long tw the
β(tw)-values, β(0) = β(∞), are the same because in the present model the width σ of η(ε)

and peq(ε) are independent of temperature.
Next, we turn to a discussion of the FDR, equation (9), which is calculated from the

fluctuation–dissipation relation, equation (6). For long waiting times one finds

X (t, tw) = γ + μ for tw 
 τeq (12)

as expected because the system is in equilibrium. Furthermore, the equal-time value also yields
the same result,

X (t, t) = lim
(t−tw)→0

X (t, tw) = γ + μ. (13)

This can easily be seen from the fact that for small time differences one has ∂tw �(t, tw) =
−∂t�(t, tw). For finite tw and long times, however, the FDR reaches a non-trivial limiting value

X∞(tw) = lim
(t−tw)→∞

X (t, tw) = γ (14)

independent of T0 > T . This result is very similar to the one obtained in [9]. It is interesting
to compare the result with the corresponding expression for the trap model with an exponential
density of states, where it is found that the long-time limit of X∞(tw) tends towards γ ,
X∞ = limtw→∞ X∞(tw) [18]. Thus, apparently, the model with a Gaussian density of states
resembles some features of the model with an exponential one for intermediate waiting times.
If interpreted in terms of a timescale-dependent effective temperature, T/X∞(tw) = 1/γ ,
one finds that it can be higher (γ < 1) or smaller (γ > 1) than the bath temperature T . It
should be mentioned, however, that one typically will have γ � 1. For instance, in a ‘force
model’, one would assume the bias induced by the external field to be symmetric and therefore
γ = μ = 1/2.

The detailed behaviour of the FDR is shown in figure 4, where I plotted X (tw + τ, tw)

versus the measuring time τ for various tw and γ = 0 for a quench from T0 = ∞ to T = 0.3σ .
It is seen that X (tw + τ, tw) starts from the short-time value X (tw, tw) = 1 and decays to its
long-time limit, equation (14). This decay takes place on the timescale (τ/tw) ∼ 1 as is to
be expected for a model with a single timescale. For very long tw, the decay of X will not
be observed due to the long measuring times required. If one starts with lower T0 the main

7



J. Phys.: Condens. Matter 19 (2007) 205107 G Diezemann

difference is that the decay from X = 1 to X = γ for a given tw takes place at somewhat later
measuring times τ . This is because for smaller T0 the system is closer to equilibrium for a given
tw. Thus, one can roughly compare X for the lower T0 and a given tw with the corresponding
one for the higher T0 but a longer tw.

Instead of computing X (t, tw) directly, the FDR or the effective temperature is usually
obtained from a so-called fluctuation–dissipation (FD) plot, i.e. a plot of the integrated response
χ(t, tw) = ∫ t

tw
ds R(t, s) versus the correlation function �(t, tw) [2, 3]. The FDR then is

extracted as the slope in such an FD plot. It has been pointed out earlier that such plots have to
be constructed with some care in the general case [6]. In some situations a plot of χ(tw + τ, tw)

versus �(tw + τ, tw) with τ as the curve parameter and fixed tw does not necessarily give the
correct FDR. This is only ensured if tw is used as the curve parameter due to the fact that
according to the definition of the integrated response one has R(t, tw) = − ∂χ(t,tw)

∂tw
. The reason

is that in general the different derivatives ∂tw�(t, tw) and ∂t�(t, tw) cannot be interchanged.
For some models with transient ageing behaviour, it has indeed been found that the former
construction yields wrong results [8, 9]. Also for the Gaussian trap model, FD plots with τ as
the curve parameter yield wrong results for the FDR. This fact is exemplified in figure 5(a),
where such FD plots for different temperatures and tw = 10−15τeq are shown. The initial
temperature was chosen as T0 = ∞. The inset shows the temperature dependence of the slopes
extracted from these plots via a linear regression in the interval 0.3 < � < 0.7. Note that
all slopes are larger than X∞(tw) = γ = 0.5. The situation is very similar to the one in a
free-energy model for glassy relaxation discussed in detail in [9].

In figure 5(b), an FD plot with tw as the curve parameter and various values of the time t
is shown for γ = 0 (upper panel) and γ = 1/2 (lower panel). It is evident that in this case the
limiting slopes coincide with X∞(tw), equation (14). However, it is also clear that the curves
change continuously until this limiting slope is reached.

Therefore, similar to the case of the trap model with an exponential density of states, it
appears that only the limiting slope X∞(tw) may be a useful candidate for the definition of an
effective temperature [6]. Additionally, the detailed behaviour of the curves also depends on
the initial temperature T0, as can be seen from figure 5(c), which shows FD plots for various T0

and a fixed time t = 10−4τeq for γ = 0, μ = 1. The limiting value for the slope is the same, as
already pointed out above.

From the above discussion it appears that the quantity T/X∞(tw) may serve as a tw-
dependent effective temperature in the Gaussian trap model. As already noted in the previous
section, there are other possible definitions of effective temperatures, in particular the one given
in equation (10), Teff(ω, tw) = ωC(ω,tw)

χ ′′(ω,tw)
. Here, the natural way to define the Fourier transform

is with respect to the measuring time [24, 25]:

C(ω, tw) = Re
∫ ∞

0
dτ�(tw + τ, tw)eiωτ

χ ′′(ω, tw) = Im
∫ ∞

0
dτ R(tw + τ, tw)eiωτ

(15)

which is similar to the definition used in most experiments. It can be shown analytically that
Teff(ω, tw) defined this way has the following limiting behaviour:

lim
tw→∞ Teff(ω, tw) = lim

ω→∞ lim
tw→0

Teff(ω, tw) = T

μ + γ
, (16)

as expected. However, the low-frequency limit is given by

lim
ω→0

lim
tw→0

Teff(ω, tw) = T

μ + γ e2(σ/T )2 , (17)

8
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(a)

(b)

(c)

Figure 5. (a) Plot of Tχ(tw + τ, tw) versus �(tw + τ, tw) (FD plot) with the measuring time τ

as the curve parameter and fixed waiting time, tw = 10−15τeq, for a quench from T0 = ∞ to
T = 0.2, 0.3, 0.4, 0.5, 0.6, 1.0, 3.0σ from bottom to top. Here, γ = μ = 1/2. The inset shows the
slopes extracted from these plots via a linear regression for the data in the interval 0.3 < � < 0.7.
(b) Plot of T χ(t, tw) versus �(t, tw) (FD plot) for a quench from T0 = ∞ to 0.25σ and times
log10(t/τeq) = −6,−4,−2, 0, 6 from bottom to top. In the upper panel γ = 0, μ = 1 has been
chosen, i.e. X∞(tw) = 0, and in the lower panel γ = μ = 1/2 (X∞(tw) = 1/2, dotted line). (c)
T χ(t, tw) versus �(t, tw) for a quench from T0 = ∞, 1.0σ , 0.5σ , and 0.4σ to T = 0.25σ and
t/τeq = 10−4, γ = 0, μ = 1.

which is different from T/X∞(tw). For μ = 1 and γ = 0 no deviations from the equilibrium
FDT can be observed at all. When considered as a function of frequency, Teff(ω, tw) starts from
the low-frequency limit T/(μ + γ e2(σ/T )2

) and roughly at ωtw ∼ 1 smoothly crosses over to
the high-frequency limit T/(μ + γ ). The main difference from T/X is that the low-frequency
limit is usually much smaller than the bath temperature T . An obvious reason for this discrep-
ancy lies in the definition of the Fourier transform. The definition of the FDR involves only the
partial derivative ∂tw�(t, tw), whereas ωC(ω, tw) according to equation (15) corresponds to the
Fourier transform of ∂t�(t, tw). Thus, the situation appears to be very similar to the one met
when considering the different ways of constructing FD plots discussed above. There is, how-
ever, one difference. For the present model it is not at all clear that a definition of an effective

9
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temperature via the Fourier transform of �(t, tw) and R(t, tw) is related to the FDR in a direct
manner. This is due to the fact that one has to consider the Fourier transform of R(t, tw) =
β X (t, tw)∂tw�(t, tw), which in general will give a convolution instead of a simple product.

It is tempting to use an alternative definition of the Fourier transform [2], Ĉ(ω, t) =
Re

∫ t
0 ds �(t, s)e−iω(t−s) and χ̂ ′′(ω, t) = Im

∫ t
0 ds R(t, s)e−iω(t−s) , for which one can see that

ωĈ(ω, t) is related to the Fourier transform of ∂tw�(t, tw). One then has T̂eff(ω, t) = ωĈ(ω,t)
χ̂ ′′(ω,t) .

However, this definition implies that one considers the situation ωt 
 1, in order for the os-
cillatory part of the functions involved to be negligible. As one can show analytically that
T̂eff(ω, t → ∞) = T̂eff(ω → ∞, t) = T/(γ + μ), this condition means that the relevant
small-frequency limit is hard to reach in practice, in particular because the relaxation takes
place on the scale ωt ∼ 1.

4. Conclusions

In the present paper I have considered the ageing behaviour of the correlation function and the
linear response in a Gaussian trap model. As in this model equilibrium is reached for long
waiting times after a quench (tw → ∞), all ageing effects are of a transient nature. The time
window in which ageing effects can be observed expands with decreasing working temperature
T if a quench from a fixed high temperature T0 is considered. If T is kept fixed and T0 is
increased the ‘ageing time window’ also increases.

If the waiting time is chosen to be longer than the equilibrium relaxation time (1/e decay
time), tw 
 τeq, the two-time quantities like the correlation function �(t, tw) and the response
function R(t, tw) approach their equilibrium values and only depend on the time difference
(t − tw). In this situation the FDT is obeyed. For short waiting times, on the other hand, one
has an explicit dependence of �(t, tw) and R(t, tw) on both times and the functions no longer
are time-translational invariant. In this situation strong violations of the FDT are observed. In
particular, for tw < τeq the FDR X (t, tw) tends to a non-trivial long-time limit X∞(tw) = γ ,
cf equation (14), independent of T0 > T . The constant γ is determined by the coupling of
the system’s dynamics to an external field via the transition rates W (H )(ε ′|ε), cf equation (4).
The only possible temperature dependence of X∞(tw) stems from a T -dependence of γ . The
value for X∞(tw) coincides with that found for the trap model with an exponential density of
states [18], albeit for long waiting times.

The FDR can be used for the definition of a timescale-dependent effective temperature,
T/X (t, tw). Usually, the effective temperature is extracted from FD plots, which can be
constructed in different ways. As has been pointed out [6], the correct way to construct FD
plots is to use tw as the curve parameter for fixed t . If FD plots are constructed this way,
the limiting slope coincides with X∞(tw). The fact that these plots are curved indicates that
not the function X (t, tw) as a whole but only the limiting value X∞(tw) may be used for a
meaningful definition of an effective temperature. If alternatively FD plots with the measuring
time as curve parameter for different tw < τeq are considered, one finds that one can define a
slope in these plots which, however, does not coincide with X (t, tw), and furthermore shows
some artificial temperature dependence. A similar problem occurs when the definition of
an effective temperature in the frequency domain is considered. The usual definition of the
Fourier transform, equation (15), yields an effective temperature that is distinct from what
one finds from the FDR. In this case, similarly as for the FD plots, one reason is that one
cannot interchange the derivatives with respect to the earlier and the later time in the correlation
function.

In the recent past FD plots have been constructed from computer simulations of model
supercooled liquids [4, 26, 27]. For the model of a fragile liquid one finds that the FDT
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is obeyed for large values of the correlation and then the slope changes to a smaller value
indicating an effective temperature larger than the bath temperature [4, 26]. For a strong liquid,
however, one finds an effective temperature smaller than the bath temperature [27]. These plots
have been constructed with the measuring time as the curve parameter and fixed waiting times.

Given the fact that the Gaussian trap model is apparently able to capture some important
features of the dynamics observed in computer simulations on supercooled liquids, it is
tempting to speculate that FD plots with the waiting time as the curve parameter might look
different to the ones published so far. Therefore, it would be interesting to calculate FD plots
from simulation data the correct way and compare the results to the previous findings.
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